COMPARATIVE STUDY OF BIOFILM PRODUCING AND NON-PRODUCING Escherichia coli ISOLATED FROM URINE SAMPLES OF PATIENTS VISITING A TERTIARY CARE HOSPITAL OF MORANG, NEPAL

A Dissertation Submitted to the **Department of Microbiology, Central Campus of Technology**, Tribhuvan University, Dharan, Nepal In Partial Fulfillment of the Requirements for the award of Degree of Masters of Science in Microbiology (Medical)

By:

Manita Tumbahangphe Department of Microbiology Central Campus of Technology, Dharan, Nepal Roll no: MB 437/072 T.U. Regd. No.: 5-2-459-4-2011 2019 ©Tribhuvan University

RECOMMENDATION

This is to certify that **Miss Manita Tumbahangphe** has completed this dissertation work entitled "**Comparative Study of Biofilm Producing and Non-producing** *Escherichia coli* isolated from **Urine Sample of Patients Visiting a Tertiary Care Hospital of Morang, Nepal**" as a partial fulfillment of the requirements for M. Sc degree in Microbiology (**Medical**) under my supervision. To my knowledge, this work has not been submitted for any other degree.

> Hemanta Khanal Assistant Professor Department of Microbiology Central Campus of Technology Hattisar, Dharan Nepal

Date:-/..../...../

CERTIFICATE OF APPROVAL

On the recommendation of Asst. **Professor Mr. Hemanta Khanal** this dissertation work of **Manita Tumbahangphe** entitled **"Comparative Study of Biofilm Producing and Non-producing** *Escherichia coli* isolated from Urine Sample of Patients Visiting a Tertiary Care Hospital of Morang, Nepal" has been approved for the examination and is submitted for the Tribhuvan University in partial fulfillment of the requirements for M. Sc degree in Microbiology (Medical).

Mr. Shiv Nandan Sah Asst. Professor Head of Department Department of Microbiology Central Campus of Technology Tribhuvan University Dharan

Mr. Hemanta Khanal Asst. Professor M. Sc Microbiology Co-ordinator Department of Microbiology Central Campus of Technology Tribhuvan University Dharan

Date:...../...../....../

BOARD OF EXAMINERS

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my respected supervisor asst. professor **Mr. Hemanta Khanal** for his continuous support, guidance and encouragement throughout my research work. This dissertation work would not have been successful without his valuable help.

I am very much obliged to my campus chief Professor **Dr. Dhan Bahadur Karki, Asst. Professor Shiva Nandan Shah**; Head of Department of Microbiology, Central Campus of Technology for providing me with the required facilities and instructions for dissertation work.

I am also thankful to all the teachers especially laboratory staff **Ain Bahadur Karki, Prajwal Bhandari,** librarian **Mr. Om Khatiwada** and library staffs for their great cooperation and help.

Furthermore, I would like to express my gratitude to my classmates, especially **Bijay Kumar Shrestha, Jenish Shakya** and **Bidhya Dhungana** for their help and support.

Finally, I would like to convey my regards to my family members for motivating and supporting me during thesis work

.....

Manita Tumbahangphe

Date:...../...../....../

ABSTRACT

Escherichia coli is the normal flora found in the intestines of warm blooded animals including humans and birds. It has been reported that E. coli is responsible for more than 80-85% of UTI cases. Several studies suggest that the prevalence of MDR E. coli is increasing day by day which is a matter of concern for the clinical therapies. The urine sample was inoculated onto the CLED agar and was incubated at 37°C for 24 hours. E. coli colonies were counted. The positive isolates of E. coli were identified by different biochemical tests such as indole test, methyl red test, Voges-Proskauer, citrate utilization test, TSIA, carbohydrate fermentation tests and starch hydrolysis test. This study reported 15% prevalence of *E. coli* out of 400 urine samples. All isolated strains of *E. coli* were tested for antibiotic susceptibility testing by using Kirby Bauer disk diffusion method. 100% of E. coli isolates showed resistance to both Ampicillin and Amoxicillin while 100% were sensitive to Chloramphenicol. This analysis also showed 70% (42/60) as MDR E. coli isolates. The maximum isolates (75%) were found to be Biofilm producers. Similarly, microtitre plate method was considered to be the most efficient screening method as compared to tube and congo red agar method. Similarly, resistance to other antibiotics such as Nalidixic acid (71.11% vs 46.66%), Norfloxacin (53.33% vs 46.66%), Cotrimoxazole (42.22% vs 26.66%) was comparatively higher among biofilm producers than non-biofilm producers. There was a significant correlation (P<0.05) between biofilm and MDR. Hence, the antibiotic resistance shown by biofilm producers was comparatively higher than non-biofilm producers.

Keywords: E. coli, Biofilm, Multidrug resistance, UTI

TABLE OF CONTENTS

Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgements	v
Abstract	vi
Table of Contents	vii-ix
List Of Tables	X
List of Figure	xi
List of Photographs	xii
List of Appendices	xiii
List of Abbreviations	xiv
CHAPTER I	1-4
INTRODUCTION AND OBJECTIVES	1-4
1.1 Background of the Study	1
1.2 Objectives	4
1.2.1 General Objectives	4
1.2.2 Specific Objectives	4
CHAPTER II	5-21
LITERATURE REVIEW	5-21
2.1 Escherichia coli	5
2.2 Classification	6
2.3 Morphology	6
2.4 Metabolism, Cultural Characteristics and Growth Requirements	7
2.5 Cell Wall Composition	8
2.6 Antigenic Structure of E. coli	9
2.6.1 O Antigens	10
2.6.2 K Antigens	10
2.6.3 F Antigen	11
2.6.4 H Antigen	11

2.7 Pathogenicity	11
2.8 Virulence Factors of E. coli	12
2.8.1 PAIs	12
2.8.2 Adhesins	13
2.8.3 Type1 Fimbriae	13
2.8.4 Dr Adhesins	14
2.8.5 F1C and S Fimbriae	14
2.9 Toxins	14
2.9.1 Hemolysin	15
2.9.2 CNF-1	15
2.9.3 Autotransporters	16
2.9.4 Other Toxins	16
2.10 Urinary Tract Infection	16
2.10.1 Uncomplicated Urinary Tract Infection	17
2.10.2 Cystitis	17
2.10.3 Pyelonephritis	17
2.10.4 Complicated Urinary Tract Infection	17
2.10.5 Recurrent UTI	18
2.10.6 Renal Scarring	18
2.10.7 Asymptomatic Bacteriuria	18
2.10.8 Catheter Associated UTI	19
2.11 Prevention of UTI	19
2.12 Treatment of UTI	20
2.13 Biofilm	21
CHAPTER III: MATERIALS AND METHODS	23-27
3.1 Materials	23
3.2 Methods	23
3.2.1 Place of study	23
3.2.2 Sample size and types	23
3.3 Sample collection	23
3.3.1 Inclusion Criteria	23
3.3.2 Exclusion Criteria	24
3.4 Culture of <i>E. coli</i>	24

3.5 Quantitative Enumeration of E. coli	24
3.6 Identification of Isolates	24
3.6.1 Identification with Staining Method	24
3.6.2 Identification with Biochemical Tests	25
3.7 Characterization	25
3.8 Biofilm Assays	25-26
3.8.1 Microtitre Plate Method	25
3.8.2 Tube Method	26
3.8.3 Congo red agar method	26
3.9 Antibiotic Susceptibility Testing	26
3.10 Quality Control for Tests	27
3.11 Data Analysis	27
CHAPTER IV: RESULT	29-37
4.1 Study Population	29
4.2 Prevalence of <i>E. coli</i>	30
4.3 Antibiotic susceptibility pattern of E. coli Isolates	31
4.4 Multidrug resistant (MDR) E. coli	32
4.5 Biofilm formation Assaying	33
4.6 Antibiotic resistance of biofilm producer and non-producer E.	34
coli	
4.7 Sensitivity and specificity of biofilm assay by tube method over	35
microtitre plate (MP) method	
4.8 Sensitivity and specificity of biofilm assay by congo red agar	36
method over microtitre plate (mp) method	
4.9 Sensitivity and specificity of biofilm screening methods	37
CHAPTER V: DISCUSSIONS	38-41
CHAPTER VI: CONCLUSIONS AND	42-43
RECOMMENDATIONS	
6.1 Conclusion	42
6.2 Recommendations	43
REFERENCES	44-52
APPENDIX	i-xi

LIST OF TABLES

Table No	Titles of Table	Page No
Table 4.3:	Antibiotic Susceptibility test of E. coli	31
Table 4.4:	Multidrug resistant (MDR) Uropathgenic E. coli	32
Table 4.5:	Biofilm formation by E. coli	33
Table 4.6:	Antibiotic Resistance of biofilm producer and non-producer E. coli	34
Table 4.7:	Sensitivity and specificity of Biofilm assay by	35
	Tube method over Microtitre plate method	
Table 4.8:	Sensitivity and specificity of Biofilm assay by	36
	Congo red Agar (CRA) method over Microtitre	
	plate (MP) method	
Table 4.9:	Sensitivity and Specificity of Biofilm Screening	37
	Methods	

LIST OF FIGURES

Figure No:	Title of Figure	
Figure 4.1:	Study Population	29
Figure 4.2:	Prevalence of E. coli	30

LIST OF PHOTOGRAPHS

Photograph No	Title of photographs	Page No
Photograph No. 1	Sample collection	53
Photograph No. 2	Sample processing in the microbiology lab	53
Photograph No. 3	Biochemical tests of E. coli	54
Photograph No. 4	Biofilm of <i>E. coli</i> in microtitre wells	54
Photograph No. 5	Biofilm Production Testing by Tube	55
Photograph No. 6	Method Antibiotic susceptibility test	55

LIST OF APPENDICES

- APPENDIX I NHRC approval letter
- APPENDIX II Materials and equipments
- APPENDIX III Composition of different types of media
- APPENDIX IV Biochemical tests procedure
- APPENDIX V Statistical analysis
- APPENDIX VI Formulas

LIST OF ABBREVIATIONS

AMR	=	Antimicrobial Resistance
UTI	=	Urinary Tract Infection
MDR	=	Multidrug Resistance
WHO	=	World Health Organization
CLSI	=	Clinical and Laboratory Standards Institute
KDa	=	Kilo Dalton
EMB	=	Eosine Methylene Blue
TSIA	=	Triple Sugar Iron Agar
MR	=	Methyl Red
VP	=	Voges-Proskauer
MP	=	Microtitre Plate
ТМ	=	Tube Method
CRA	=	Congo Red Agar