
ANTIBIOGRAM OF BIOFILM PRODUCING AND NON-PRODUCING COMMUNITY ACQUIRED-METHICILLIN RESISTANT Staphylococcus aureus ISOLATED FROM POTENTIAL RISK POPULATION OF DHARAN, NEPAL

A Dissertation Submitted to the **Department of Microbiology**, **Central Campus of Technology**, Tribhuvan University, Dharan, Nepal, in Partial Fulfillment of the Requirements for the Award of Degree of Masters of Science in Microbiology (Medical)

> By: Jenish Shakya T.U.Regd.No.5-2-0008-0080-2010 Roll No: MB432/072 Dharan 2018 ©Tribhuvan University

RECOMMENDATION

This is to certify that **Mr. Jenish Shakya** has completed this dissertation work entitled "Antibiogram of Biofilm Producing and Non-Producing Community Acquired–Methicillin Resistant Staphylococcus aureus isolated from Potential Risk Population of Dharan, Nepal" as a partial fulfillment of the requirement of M.Sc. degree in Microbiology (Medical) under my supervision. To my knowledge, this work has not been submitted for any other degree/s.

Hemanta Khanal Supervisor Assistant Professor Department of Microbiology Central Campus of Technology Hattisar, Dharan, Nepal

Date:/...../....../

CERTIFICATE OF APPROVAL

On the recommendation of Asst. Professor Mr. Hemanta Khanal this dissertation work of Mr. Jenish Shakya entitled "Antibiogram of Biofilm Producing and Non-Producing Community Acquired–Methicillin Resistant Staphylococcus aureus isolated from Potential Risk Population of Dharan, Nepal" has been approved for the examination and is submitted for the Tribhuvan University in Partial fulfillment of the requirements for M.Sc. degree in Microbiology (Medical).

Mr. Shiv Nandan Sah

Asst. Professor Head of Department Department of Microbiology Central Campus of Technology Tribhuvan University, Dharan ------

Mr. Hemanta Khanal Asst. Professor M. Sc. Microbiology Programme Co-ordinator Department of Microbiology Central Campus of Technology Tribhuvan University, Dharan

Date:/..../...../

BOARD OF EXAMINERS

Recommended by:	•••••••	•••••
	Asst. Professor Mr. Hen	nantaKhanal
		Supervisor
Approved by:		
	Mr. F	Prince Subba
	M.Sc. Programme	Coordinator
Examined by:		
	()
	Intern	al Examiner
	()
	,	, al Examiner

Date:/...../....../

ACKNOWLEDGEMENT

I owe my deepest gratitude and heartfelt appreciation to my respected supervisor **Asst. Professor Mr. Hemanta Khanal** for his continuous support, encouragement and expert guidance throughout my research work. Without his valuable help, it would not have been possible to complete this dissertation work successfully.

I am much obliged to my Campus Chief **Professor Dr. Dhan Bahadur Karki, Asst. Professor Shiv Nandan Sah**; Head of Department of Microbiology, Central Campus of Technology for providing me with the required facilities and instructions for the dissertation work.

Additionally, I am also thankful to all the teachers especially Asst. Professor Mr. Suman Rai and laboratory staff Ain Bahadur Karki, Prajwal Bhandari, librarian Mr. Om Khatiwada and library staff for their great cooperation and help.

Finally, I would express my gratitude to my friends, especially **Mr. Bijay Kumar Shrestha**, senior **Mrs. Jyoti Rai** and juniors from BSc nutrition and dietetics department **Ms. Jenisha Dahal** and **Manita Ghimire** for their help and support.

I would like to convey my regards to my entire family members for motivating and supporting me during the thesis work.

Jenish Shakya

Date:/..../...../

ABSTRACT

Staphylococcus aureus is one of the common cause of hospital acquired infection and community acquired infections. Nowadays these organisms gas become resistant towards variety of drugs. MRSA is the emerging antibiotic resistant bacteria that are resistant to methicillin antibiotic and known to be the infectious pathogen causing severe infection and a cause of fatal mortality. Aim: Altogether 200 nasal swabs and 200 hand swabs were taken from and transported to microbiology lab in cold chain. The samples were swabbed in mannitol salt agar containing oxacillin powder of 6mg/L and incubated at 37°C for 24 hrs. Staphylococcus aureus colonies were identified based on growth characteristics on MSA plates (golden yellow colonies), Gram stain and positive results for coagulase and catalase test. The pure isolated MRSA were subjected to antibiotic susceptibility tests, biofilm formation assays, and MIC. From our study the overall prevalence of CA-MRSA was 61.5%. Higher frequency of multi-drug resistant MRSA was isolated. The biofilm producing CA-MRSA were 51.2% and rest (48.7%) were non-producers. There was significant association in biofilm production with multi-drug resistance (p<0.05). The prevalence of CA-MRSA was found more in barbers followed by beauticians and municipal waste workers in comparison to healthy controls. The 51.2% isolates' were biofilm producing CA-MRSA were which showed significant drug resistance. Ciprofloxacin was most sensitive drug against the isolates which was statistically significant (p<0.05). The resistant pattern of biofilm producers reported high ability of multi-drug resistance compared to non-biofilm producers (p<0.05). Microtitre plate method was found to be gold standard over tube and congo red agar method for screening biofilm formation. The prevalence of VISA and VRSA among CA-MRSA was found to be 49.5 % and 40.6% respectively among the isolates. Improvement in personal hygiene and formulation of appropriate health policy helps to prevent CA-MRSA infection. This study concludes that CA-MRSA is still emerging with multi-drug resistance. The emergence of VISA and VRSA strains has increased concern in vancomycin treatment failure.

Keywords: CA-MRSA, VISA, VRSA, biofilm, antibiotic susceptibility test, multi-drug resistance

TABLE OF CONTENTS

Title	Page No.
Title Page	i
Recommendation	
Certificate of Approval	
Boards of Examiners	
Acknowledgements	V
Abstract	vi
Table of Contents	
List of Abbreviations	
List of Tables	xii
List of Figures	xiii
List of Photographs	xiv
List of Appendices	XV
CHAPTER I: INTRODUCTION AND OBJECTIVES	
1.1 Background	1-5
1.2 Objectives	6
1.2.1 General objectives	6
1.2.2 Specific objectives	6
CHAPTER II: LITERATURE REVIEW	
2.1 Staphylococcus aureus	7-10
2.2 Classification of Staphylococcus	10
2.2.1 Classification of Staphylococcus on the basis of pigm	nent 10
2.3 Cultural characteristics	
2.3.1 Biochemical characteristics	11-12
2.4 Virulence factors	12-15
2.4.1 Cell-associated polymers	12
2.4.2 Cell-surface proteins	12-13
2.4.3 Super-antigen exotoxins	14
2.4.4 Extracellular enzymes	14-15
2.5 Staphylococcal diseases	15-19
2.5.1 Cutaneous infections	16

2.5.2 Deep infection	16-18	
2.5.3 Toxin-mediated diseases	18-19	
2.6 Classification of MRSA	19	
2.7 Types of MRSA	19	
2.7.1 CA-MRSA	19-20	
2.7.2 HA-MRSA	20-21	
2.8 Sources and transmission of MRSA	21-22	
2.9 Mechanism of resistance	22	
2.10 Resistance and treatment	23	
2.11 Prevention	23-24	
CHAPTER III: MATERIALS AND METHODS	25-31	
3.1 Materials	25	
3.2 Methods	25	
3.2.1 Study design	25	
3.2.2 Sample size and types	25	
3.2.3 Laboratory set up	25	
3.2.4 Data collection	25	
3.3 Collection of samples	26	
3.4 Processing of samples	26	
3.5 Identification of MRSA	26	
3.6 Antibiotic susceptibility testing	26-27	
3.7 Biofilm formation test	27-28	
3.7.1 Microtitre plate method	27-28	
3.7.2 Tube method	28	
3.7.3 Congo red agar method	28	
3.8 Determination of minimum inhibitory concentration	28-29	
3.9 Quality control for tests	29	
3.10 Data analysis	29	
CHAPTER IV: RESULTS	32-51	
4.1 Study population of sample population	32-33	
4.1.1 Population type of sample population		
4.2 Gender-wise distribution of patients with MRSA	34	

4.2.1 Gender-wise distribution of MRSA positive in sample	35
population	
4.3 Comparative study of MRSA isolated from total samples	36
4.4 Comparative study of MRSA isolated from different samples	
4.5 MRSA isolated from different age groups of male and female	
4.6 Prevalence of MRSA in sample population	
4.7 Comparative study of biofilm formation by MRSA in	40
potential risk population	
4.8 Biofilm formation assay	41
4.9 Sensitivity and specificity of biofilm screening methods	42
4.10 Antibiotic susceptibility pattern of MRSA isolates	
4.11 Resistance pattern of biofilm producing MRSA	
4.12 Multi-drug resistant (MDR) CA-MRSA	
4.13 MIC of vancomycin to total MRSA isolates	46
4.14 MIC of vancomycin to MRSA isolates from different sample	47
population	
4.15 MIC of vancomycin to MRSA isolates from different gender	48
population	
4.16 MIC of vancomycin to MRSA isolates from hand and nasal	49
sample	
4.17 MIC of vancomycin to MRSA isolates from different age	50
groups of sample population	
CHAPTER V: DISCUSSIONS	51-58
CHAPTER VI: CONCLUSIONS & RECOMMENDATIONS	59-60
5.1 Conclusion	59
5.2 Recommendations	60
REFERENCES	61-75
APPENDICES	

LIST OF ABBREVIATIONS

AMR	:	Antimicrobial Resistance
ATCC	:	American Type Culture Collection
CA-MRSA	:	Community Acquired Methicillin Resistant S. aureus
CDC	:	Centre for Disease Control
CLSI	:	Clinical and Laboratory Standards Institute
CRA	:	Congo Red Agar
DNA	:	Deoxyribonucleic Acid
ELISA	:	Enzyme Linked Immunosorbent Assay
FDA	:	Food and Drug Administration
HA-MRSA	:	Hospital Acquired Methicillin Resistant S. aureus
KDa	:	Kilo Dalton
NB	:	Nutrient Broth
MDR	:	Multidrug Resistance
MIC	:	Minimum Inhibitory Concentration
MSA	:	Mannitol Salt Agar
NCCLS	:	National Committee for Clinical Laboratory Standards
OD	:	Optical Density
PBP	:	Penicillin Binding Protein
PBS		Phosphate Buffer Saline
PVL	:	Panton-Valentine leucocidin
TSB	:	Trypticase Soya Broth
TM	:	Tube Method
VISA	:	Vancomycin-intermediate S. aureus
VRSA	:	Vancomycin-resistant S. aureus
VSSA	:	Vancomycin-susceptible S. aureus
WHO	:	World Health Organization

LIST OF TABLES

- Table 4.1:Gender wise distribution of MRSA positive in sample
population
- Table 4.2:
 Comparative study of MRSA isolated from total samples
- Table 4.3:
 Prevalence of MRSA isolated from different samples
- Table 4.4:Comparative study of biofilm formation by MRSA in potential
risk population
- Table 4.5:Biofilm formation by MRSA by three methods
- Table 4.6:
 Sensitivity and specificity of biofilm screening methods
- Table 4.7:
 Antibiotic susceptibility pattern of MRSA isolates
- Table 4.8:
 Resistance pattern of biofilm producing CA-MRSA
- Table 4.9: Multi-drug resistant (MDR) CA-MRSA
- Table 4.10: MIC of Vancomycin to total MRSA isolates
- Table 4.11:
 MIC of Vancomycin to MRSA isolates from different sample population
- Table 4.12:
 MIC of Vancomycin to MRSA isolates from different gender population
- Table 4.13:
 MIC of Vancomycin to MRSA isolates from hand and nasal sample
- Table 4.14:
 MIC of Vancomycin to MRSA isolates from different age groups of sample population

LIST OF FIGURES

- Figure 4.1: Study population of sample population
- Figure 4.2: Population type of sample population
- Figure 4.3: Gender-wise distribution of MRSA in sample population
- Figure 4.4: MRSA isolated from different age groups of male and female
- Figure 4.5: Prevalence of MRSA in sample population

LIST OF PHOTOGRAPHS

Photograph 1:	Sample collection
Photograph 2:	Biofilm screening by congo red agar positive (black colonies)
Photograph 3:	Biofilm production by CA-MRSA in microtitre wells
Photograph 4:	Operating ELISA reader for determining biofilm OD
Photograph 5:	Antibiotic susceptibility test of CA-MRSA
Photograph 6:	MIC of vancomycin by Microbroth dilution method

LIST OF APPENDICES

- Appendix: II Materials and equipment's
- Appendix: III Bacteriological media
- Appendix: IV Composition and preparation of different reagents
- Appendix: V Procedure of different biochemical tests
- Appendix: VI Antibiotic susceptibility test
- Appendix: VII Chi-square data
- Appendix: VIII Formulas